15 research outputs found

    WEBT and XMM-Newton observations of 3C 454.3 during the post-outburst phase. Detection of the little and big blue bumps

    Get PDF
    The blazar 3C 454.3 underwent an unprecedented optical outburst in spring 2005. This was first followed by a mm and then by a cm radio outburst, which peaked in February 2006. We report on follow-up observations by the WEBT to study the multiwavelength emission in the post-outburst phase. XMM-Newton observations on July and December 2006 added information on the X-ray and UV fluxes. The source was in a faint state. The radio flux at the higher frequencies showed a fast decreasing trend, which represents the tail of the big radio outburst. It was followed by a quiescent state, common at all radio frequencies. In contrast, moderate activity characterized the NIR and optical light curves, with a progressive increase of the variability amplitude with increasing wavelength. We ascribe this redder-when-brighter behaviour to the presence of a "little blue bump" due to line emission from the broad line region, which is clearly visible in the source SED during faint states. Moreover, the data from the XMM-Newton OM reveal a rise of the SED in the UV, suggesting the existence of a "big blue bump" due to thermal emission from the accretion disc. The X-ray spectra are well fitted with a power-law model with photoelectric absorption, possibly larger than the Galactic one. However, the comparison with previous X-ray observations would imply that the amount of absorbing matter is variable. Alternatively, the intrinsic X-ray spectrum presents a curvature, which may depend on the X-ray brightness. In this case, two scenarios are possible.Comment: 9 pages, 7 figures, accepted for publication in A&

    Photometry and spectroscopy of GRB 060526: A detailed study of the afterglow and host galaxy of a z = 3.2 gamma-ray burst

    Get PDF
    Aims: With this paper we want to investigate the highly variable afterglow light curve and environment of gamma-ray burst (GRB) 060526 at z = 3.221. Methods: We present one of the largest photometric datasets ever obtained for a GRB afterglow, consisting of multi-color photometric data from the ultraviolet to the near infrared. The data set contains 412 data points in total to which we add additional data from the literature. Furthermore, we present low-resolution high signal-to-noise spectra of the afterglow. The afterglow light curve is modeled with both an analytical model using broken power law fits and with a broad-band numerical model which includes energy injections. The absorption lines detected in the spectra are used to derive column densities using a multi-ion single-component curve-of-growth analysis from which we derive the metallicity of the host of GRB 060526. Results: The temporal behaviour of the afterglow follows a double broken power law with breaks at t = 0.090 ± 0.005 and t = 2.401 ± 0.061 days. It shows deviations from the smooth set of power laws that can be modeled by additional energy injections from the central engine, although some significant microvariability remains. The broadband spectral-energy distribution of the afterglow shows no significant extinction along the line of sight. The metallicity derived from S and Fe of [S/H] = -0.57 ±0.25 and [Fe/H] = -1.09±0.24 is relatively high for a galaxy at that redshift but ii ii comparable to the metallicity of other GRB hosts at similar redshifts. At the position of the afterglow, no host is detected to F775W(AB) = 28.5 mag with the HST, implying an absolute magnitude of the host M(1500 Å) > -18.3 mag which is fainter than most long-duration hosts, although the GRB may be associated with a faint galaxy at a distance of 11 kpc. © ESO 2010

    A Search for Host Galaxies of 24 Gamma Ray Bursts

    Get PDF
    We report the results from observations of 24 gamma ray burst (GRB) fields from 2005 and 2006 undertaken at the Danish 1.54m telescope at ESO/La Silla. Photometry and positions for two previously unpublished host galaxy candidates (GRBs 050915 and 051021) are presented, as well as for eight other detected objects which are either known GRB hosts or candidate hosts. The candidates are suitable for spectroscopic follow-up in order to have their redshifts and other physical characteristics determined. In the cases where no likely host candidate is detected inside the refined Swift XRT error circle we are still able to put interesting and rather deep limits on the host magnitude. Based on our detections and upper limits we have performed simulations which suggest that the host galaxies are drawn from a fainter sample than previous (i.e. pre-Swift) studies

    600 mV epitaxial crystal silicon solar cells grown on seeded glass

    No full text
    We report progress made at the National Renewable Energy Laboratory NREL on crystal silicon solar cells fabricated by epitaxially thickening thin silicon seed layers on glass using hot wire chemical vapor deposition. Four micron thick devices grown on single crystal silicon layer transfer seeds on glass achieved open circuit voltages Voc over 600 mV and efficiencies over 10 . Other devices were grown on laser crystallized mixed phase solidification MPS seeds on glass and e beam crystallized EBC a Si on SiC coated glass seeds. We discuss the material quality of the various devices on seeds and summarize the prospects for the seed and epitaxy PV approac

    Photometry and spectroscopy of GRB 060526: A detailed study of the afterglow and host galaxy of a z = 3.2 gamma-ray burst

    Get PDF
    Aims: With this paper we want to investigate the highly variable afterglow light curve and environment of gamma-ray burst (GRB) 060526 at z = 3.221. Methods: We present one of the largest photometric datasets ever obtained for a GRB afterglow, consisting of multi-color photometric data from the ultraviolet to the near infrared. The data set contains 412 data points in total to which we add additional data from the literature. Furthermore, we present low-resolution high signal-to-noise spectra of the afterglow. The afterglow light curve is modeled with both an analytical model using broken power law fits and with a broad-band numerical model which includes energy injections. The absorption lines detected in the spectra are used to derive column densities using a multi-ion single-component curve-of-growth analysis from which we derive the metallicity of the host of GRB 060526. Results: The temporal behaviour of the afterglow follows a double broken power law with breaks at t = 0.090 ± 0.005 and t = 2.401 ± 0.061 days. It shows deviations from the smooth set of power laws that can be modeled by additional energy injections from the central engine, although some significant microvariability remains. The broadband spectral-energy distribution of the afterglow shows no significant extinction along the line of sight. The metallicity derived from S and Fe of [S/H] = -0.57 ±0.25 and [Fe/H] = -1.09±0.24 is relatively high for a galaxy at that redshift but ii ii comparable to the metallicity of other GRB hosts at similar redshifts. At the position of the afterglow, no host is detected to F775W(AB) = 28.5 mag with the HST, implying an absolute magnitude of the host M(1500 Å) > -18.3 mag which is fainter than most long-duration hosts, although the GRB may be associated with a faint galaxy at a distance of 11 kpc. © ESO 2010

    Photometry and spectroscopy of GRB 060526: A detailed study of the afterglow and host galaxy of a z = 3.2 gamma-ray burst

    No full text
    Aims: With this paper we want to investigate the highly variable afterglow light curve and environment of gamma-ray burst (GRB) 060526 at z = 3.221. Methods: We present one of the largest photometric datasets ever obtained for a GRB afterglow, consisting of multi-color photometric data from the ultraviolet to the near infrared. The data set contains 412 data points in total to which we add additional data from the literature. Furthermore, we present low-resolution high signal-to-noise spectra of the afterglow. The afterglow light curve is modeled with both an analytical model using broken power law fits and with a broad-band numerical model which includes energy injections. The absorption lines detected in the spectra are used to derive column densities using a multi-ion single-component curve-of-growth analysis from which we derive the metallicity of the host of GRB 060526. Results: The temporal behaviour of the afterglow follows a double broken power law with breaks at t = 0.090 ± 0.005 and t = 2.401 ± 0.061 days. It shows deviations from the smooth set of power laws that can be modeled by additional energy injections from the central engine, although some significant microvariability remains. The broadband spectral-energy distribution of the afterglow shows no significant extinction along the line of sight. The metallicity derived from S and Fe of [S/H] = -0.57 ±0.25 and [Fe/H] = -1.09±0.24 is relatively high for a galaxy at that redshift but ii ii comparable to the metallicity of other GRB hosts at similar redshifts. At the position of the afterglow, no host is detected to F775W(AB) = 28.5 mag with the HST, implying an absolute magnitude of the host M(1500 Å) > -18.3 mag which is fainter than most long-duration hosts, although the GRB may be associated with a faint galaxy at a distance of 11 kpc. © ESO 2010
    corecore